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X-ray ¯uorescence holography (XFH) two-dimensional angular scans with the

¯uorescing Cu atom of a Cu3Au single crystal for different noise levels have

been calculated and the structure factors have been numerically restored,

supporting the ab initio structure determination method ®rst discussed by

Chukhovskii & Poliakov [Acta Cryst. (2003), A59, 109±116]. In the case of

resultant XFH scans where noise levels are up to the regular signal values at

each angular scan point, the elaborated method is found to work well. With the

use of the linear regression algorithm code [Chukhovskii & Poliakov Acta Cryst.

(2003), A59, 109±116], the restored structure factors show clearly not just good

accuracy of the restoration code procedure but also the ef®ciency of the

structure-determination method that can utilize the XFH data even for high

noise levels.

1. Introduction

A classical problem in modern X-ray and electron diffraction

techniques is to determine the atomic crystal structure. In the

most general case, obtaining a full solution for crystal struc-

tures relies on complete faith in theoretical scattering models,

which provide insight into the fundamental physics. Among

them, the most fruitful model for structure determination

purposes is the kinematical theory of the short-wavelength

radiation elastic scattering. The latter is utilized in a number of

conventional direct methods that decode data from X-ray

and/or electron diffraction information, respectively (see e.g.

Giacovazzo, 1998, for details). For electron diffraction, there

are no cases with real samples where the kinematical

approximation is rigorously valid and a correct model requires

the inclusion of dynamical effects (e.g. Marks & Landree,

1998; Hu et al., 2000; Chukhovskii et al., 2001; Chukhovskii &

Poliakov, 2003a). For instance, Chukhovskii & Poliakov

(2003a) have developed the `dynamical' concept of direct

methods, combining dynamical electron diffraction and high-

resolution transmission-electron-microscopy data, and also

the domino type of phase-retrieval algorithm has been

proposed, which is capable of yielding a unique phase

restoration.

Over the last 15 years, there has been substantial success

with the short-wavelength (e.g. photoelectrons, ¯uorescent

X-ray quanta) interference technique coupled appropriately

with its analysis in terms of Gabor's holography scheme (see

Gabor, 1948) and image restoration simulations (see e.g.

Barton, 1988; Gog et al., 1996; Adams et al., 1998, for refer-

ences of interest). Just as for photoelectrons, the X-ray ¯uor-

escence holography (XFH) data taken over some spherical

surface in the reciprocal fkg-space can be described as the

hologram function ��k� � �I�k� ÿ I0�k��=I0�k�, where I�k� is

the X-ray intensity detected for the given wavevector k and

I0�k� is the corresponding intensity emerging from the ¯uor-

escing atom in the absence of an object. Modern XFH

schemes utilize incident plane-wave radiation, while ¯uores-

cing atoms detect an interference signal. For this, a ¯uores-

cence yield depends on both the incident X-radiation direction

and its energy, which allows better counting statistics to be

obtained (Gog et al., 1995; Novikov et al., 1998; Adams et al.,

2000; Chukhovskii et al., 2002).

Noteworthy is the fact that, despite the large number of

attempts to utilize the experimental XFH data, very few

crystal structures have produced a good image restoration.

That is why in many cases of XFH data Barton's multiple

energy transform (see e.g. Adams et al., 1998; Chukhovskii et

al., 2002) has often been `trial and error'. As is known, the

basic Barton transform (Barton, 1988, 1991) was ®rst elabor-

ated to exploit photoelectron holography data. Both the basic

and multiple-energy Barton transforms are based on the

Helmholtz±Kirchoff integral theorem and suggest that the

maxima of the wave®eld amplitude distribution match the

scattering-atom positions. As far as we know, the Barton

transform does nothing for the long-range aims of structure

determination but con®nes itself to the atomic scale imaging of

the crystalline unit cell only. It should be mentioned that XFH

substantially differs from photoelectron holography not only

in the much higher noise level but also because of the



polarization properties of the X-ray spherical waves generated

by scattering atoms, which coherently contribute to the hol-

ography signal (the two-dimensional angular XFH scan).

In our previous paper (Chukhovskii & Poliakov, 2003b,

hereafter CHP), we showed how the ab initio structure

determination method could obtain atomic scale structure

information using the XFH data without placing any limits on

the structure factors under restoration. In contrast, conven-

tional X-ray diffraction techniques operate using the known

(experimental) moduli of structure factors and some mathe-

matical models with limits (e.g. phase invariants) imposed on

the structure-factor phases. At the same time, although the ab

initio XFH structure-determination method was successfully

proved (CHP), some features, particularly the in¯uence of

noise that accompanies the `regular' XFH angular scan, were

beyond the scope of consideration. In fact, the resultant XFH

angular scan is a linear superposition of the regular angular

scan and a noise and, in the XFH case, the latter can become

rather high owing to quite low counting statistics. Despite the

generic attraction of the XFH method, the cardinal question

arises: what noise level can the ab initio structure determina-

tion method based on noisy XFH signal data withstand? A

prerequisite to solving this issue is to apply the appropriate

linear regression algorithm code described in CHP to obtain

the atomic scale structure information for different noise

levels of the XFH data.

In this paper, the numerical simulations are given for the

sample of a Cu3Au single crystal with ¯uorescing Cu atom at

an energy of 10 keV for the unpolarized incident plane-wave

X-radiation and different noise levels. The numerical simula-

tion is carried out within the kinematical scattering approach,

according to which the incident plane-wave X-radiation

undergoes the ®rst-order scattering at atoms adjacent to the

¯uorescing Cu atom. One step further, the linear regression

algorithm code (CHP) applied for the structure-factor

restoration makes clear the noise level values up to which,

based on the XFH technique, the ab initio structure deter-

mination method does work. Noteworthy is the fact that such

a study can facilitate the execution of the XFH technique in

the ®eld of structural crystallography.

2. Analysis

We will brie¯y repeat the theoretical analysis for the hologram

function ��k� (derived in more detail in CHP), aiming to

introduce the necessary mathematical formalism.

In the case of unpolarized incident plane-wave X-radiation,

the hologram function ��k� can be written as follows (cf. the

corresponding expression in CHP):

��k� � �reg�k� � ��k�;
�reg�k� � re

Z
d3r �1� �n � j�2� cos�k�j � r� r��

r
��r�; �1�

where re is the classical radius of an electron, re = 2.818 �
10ÿ15 m, k � kj is the wavevector of the incident plane-wave

radiation, jjj � 1, ��r� is the electron-charge-density (ECD)

function of the crystalline medium, r � rn, jnj � 1, �reg�k� and

��k� are the regular part and the noise part of the XFH data,

respectively. Noteworthy is the fact that the above robust

equation (1) for the X-ray hologram function does work if one

can neglect the double- and multiple-scattering processes

(extinction) of the incident plane-wave radiation.

Further, one uses the Fourier representation of the ECD

function �(r) as the sum of the reciprocal-space ��h� har-

monics over the reciprocal diffraction vectors h as:

��r� �P
h

��h� exp�ih � r� �2�

and in many cases, for which the kinematical scattering

approach will be rather accurate, the ECD ��h� harmonics

may be replaced by the corresponding structure factor F�h�
using the well known relationship (V is a crystal unit-cell

volume)

��h� � F�h�=V:

By inserting (2) into (1), straightforward evaluations yield

the following expression for the regular part of a hologram

function (CHP)

�reg�k� �
2�re

k2

X
h

��h�f �k; h�;

f �k; h� � fspher�k; h� � fpolar�k; h�;
�3�

where each term ��h�f �k; h� represents by itself the product of

the Fourier ECD ��h� harmonics and dimensionless scattering

function f �k; h�. The latter in turn is the linear superposition of

two terms, one of which is polarization independent:

fspher�k; h� � ÿ k2

k2 ÿ �h� k�2 ÿ
k2

k2 ÿ �hÿ k�2 �h 6� 0�; �4�

and the other is polarization dependent:

fpolar�k; h� � fln�ÿi�k� jh� kj�� ÿ ln�ÿi�kÿ jh� kj��g

� 3k�k2 � h � k�2
jh� kj5 ÿ k3

jh� kj3
� �
ÿ 2k4�k2 � h � k�2
jh� kj4�k2 ÿ jh� kj2� �

2k2

jh� kj2

ÿ 4�k2 � h � k�
jh� kj4 ÿ fln�i�kÿ jhÿ kj��

ÿ ln�i�k� jhÿ kj��g 3k�k2 ÿ h � k�2
jhÿ kj5 ÿ k3

jhÿ kj3
� �

ÿ 2k4�k2 ÿ h � k�2
jhÿ kj4�k2 ÿ jhÿ kj2� �

2k2

jhÿ kj2

ÿ 4�k2 ÿ h � k�
jhÿ kj4 ; �h 6� 0�: �5�

Correspondingly, the scattering functions fspher�k; 0� and

fpolar�k; 0� are

fspher�k; 0� � 0:5; �6�
fpolar�k; 0� � 2�0:25ÿ 2� C� ln 2� � ÿ0:9593 �7�

(C is Euler's constant, C � 0.5772).
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It should be noted that the dimensionless scattering func-

tion f �k; h� speci®ed by (3)±(5) as a function of wavevector k

contains singularities at the positions of Kossel lines de®ned

by the well known equations k � jh� kj but not at the

`accidental' points k � �h by virtue of equations (1) and (2).

For instance, to calculate the correct partial contribution

connected with the reciprocal-lattice vector �h to the regular

hologram function �reg�k�, one needs to sum the corre-

sponding terms of ��h�f �k; h� and ��ÿh�f �k;ÿh�, provided

that both the ECD identity of ��h� � ��ÿh�� and the scat-

tering function identity f �k; h� � f �k;ÿh�� hold.

As to the noise of XFH data, the noise is assumed to be

accidental for every angular scan point, i.e. the noise function

contributing to the resultant hologram function [see equation

(1)] can be chosen in the form

��k� � �Random�ÿ1; 1��reg�k�; �8�

where � is the noise amplitude (level), the function

Random [ÿ1, 1] gives a uniformly distributed pseudorandom

real number in the rangeÿ1 to 1. With the above noise model,

the route-mean-square error h"�k�2i1=2 of the resultant holo-

gram function ��k� at each point k is equal to �|�reg�k�j=3.

As follows from (1), the resultant hologram function

��k� is a linear superposition of terms of the type

��h�f �k; h� � ��h��f �k; h�� and, thus, depends on the moduli

and phases of structure-factor amplitudes. It means that the

XFH method used to restore the structure factors belongs to

the class of ab initio structure-determination methods. Recall

that in the case of any conventional X-ray diffraction method

one deals with the diffraction patterns where only the moduli

set, fj��h�jg, are feasible to measure and for phasing the

diffraction pattern one has to use diverse mathematical

procedures, each of which in general yields multiple redundant

structure solutions.

2.1. Numerical simulation of the noise-contamination-prone
XFH angular scans

In practice, the resultant hologram function ��k� is obtained

in the form of the XFH ��; '� scan, where ' is the azimuth

angle and � is the elevation angle of the incident plane-wave

radiation [see Fig. 1, recall that k � kj��; '�, where jkj � k

and jj��; '�j � 1]. Herein, the numerically simulated XFH

��; '� scans with a ¯uorescing Cu atom of the Cu3Au structure

depending on a different noise level � of the noise ���; '� scan

are put to the test. By virtue of (1)±(8), the XFH ��; '� scans

are calculated at an energy of 10 keV of the unpolarized

Figure 1
Geometry of obtaining the two-dimensional XFH ��; '� scans. The
azimuth angle ' and the elevation angle � are measured with respect to
the (001) surface of the Cu3Au sample.

Figure 2
The numerically simulated XFH ��; '� scans for 360� azimuth ', step �' =
1, and elevation � from 20 to 90�, step �� = 1, at an energy of 10 keV for
the incident X-radiation depending on the different noise level � equal
to: (a) 0, (b) 0.2, (c) 0.6. The total number N of diffraction re¯ections (h)
contributing to the XFH ��; '� scans is 243.



incident plane-wave X-radiation for 360� azimuth ', step �' =

1, and elevation angle � varies from 20 to 90�, step �� = 1. The

simulated XFH scan examples are displayed in Fig. 2 for � = 0,

0.2, 0.6 and in Fig. 3 for � = 1, 2, 6 for the total number N of

true structure factors Ftrue(h) equal to 243. Owing to the m3m

point symmetry of the Cu3Au structure, among the total

number of 243 structure factors Ftrue(h), only 25 structure

factors are crystallographically different, and only 22 of them

are different valued because the values of the structure

amplitudes for pairs of crystallographic planes of {003} and

{212}, {104} and {223}, {303} and {114} types do not differ from

each other.

The cases (a)±(c) of Figs. 2 and 3 are related to the

numerical values 0, 0.2, 0.6 and 1, 2, 6 of the noise amplitude

�, respectively. Generally, depending on the noise level �, the

simulated XFH patterns are the noise-contamination-prone

superposition of Kossel's lines k � jh� kj related to the

different reciprocal-lattice vectors h, the total number of

which is equal to 243 (cf. CHP). In the case of � = 0, because

of the fourfold-axis symmetry around the [001] direction and

mirror plane normal to the [110] direction for the Cu3Au

crystal structure, the XFH ��; '� scans possess the azimuth `90

degree translation' symmetry, and each fourth part of the XFH

��; '� scans has the azimuth `45 degree symmetry' (cf. Fig. 2a

herein, and Fig. 5c in CHP). It is clearly seen that up to � = 1

the XFH ��; '� scans (see Figs. 2a±c, Fig. 3a) keep the general

features of the gauge (regular) XFH ��; '� scan of Fig. 2(a) for

� = 0. Then, with further increasing � they turn into rambling

ones far from the gauge scan displayed in Fig. 2(a).

2.2. Structure-factor restoring: least-squares method and
statistical errors estimation

To examine the XFH structure determination method, one

formulates the issue as restoring structure factors Ftrue�h� by

the use of the resultant XFH ��; '� scans numerically simu-

lated (see Figs. 2 and 3) and treated as the known ones,

�ij � ���i; 'j� at each two-dimensional point ��i; 'j�, which

depend on the noise level �. Given an estimate for the

structure amplitudes generated by a standard least-squares

method, consider a �2 form under minimization, namely:

�2 � P
i;j

��ij ÿ �reg;ij�2=h"2
iji

" #
min

�9�

and the following notations are introduced:

�reg;ij � �reg��i; 'j�; h"2
iji � h"2��i; 'j�i:

Correspondingly, equation (9) reduces to the matrix equation

for the structure factors:

bAF � B; �10�
where the symmetric matrix bA and the column vector B are

introduced by

Â � A�h; g�;

B � B�h�;

A�h; g� �
X

ij

fij�h�fij�g�
h"2

iji
;

B�h� �
X

ij

�ijfij�h�
h"2

iji
;

�11�

Acta Cryst. (2004). A60, 82±88 Chukhovskii and Poliakov � X-ray fluorescence holography 85

research papers

Figure 3
The numerically simulated XFH ��; '� scans for 360� azimuth ', step �' =
1, and elevation � from 20 to 90�, step �� = 1, at an energy of 10 keV of
the incident X-radiation depending on the different noise level � equal
to: (a) 1, (b) 2, (c) 6. The total number N of diffraction re¯ections (h)
contributing to the XFH ��; '� scans is 243.



research papers

86 Chukhovskii and Poliakov � X-ray fluorescence holography Acta Cryst. (2004). A60, 82±88

the elements of which are fij�h� � f ��i; 'j; h�. The column

vector F consists of the restored structure factors Frest(h) for

different reciprocal-lattice vectors h.

As follows from (11), each matrix element A(h, g) is the

linear superposition of the bilinear product of the scattering

functions, fij(h) fij(g), divided by the mean square h"2
iji whereas

the column element B(h) is the linear superposition of the

normalized resultant XFH scan functions �ij=h"2
iji1=2 weighted

with the normalized scattering functions fij�h�=h"2
iji1=2.

By substituting the noise function, �ij � ���i; 'j�, into the

right-hand side of the second equation of (11) and assuming

the noise measured is statistically independent for all `each-to-

each' scan points, one easily ®nds that the discrete correlation

function hB(h)B(g)i evaluated for the two reciprocal-lattice

vectors h and g is equal to

hB�h�B�g�i � A�h; g�; �12�
i.e., in other words, the discrete correlation function

hB(h)B(g)i is simply equal to the matrix element A(h, g) of the

basic matrix equation (9) for restoring the structure factor by

use of the resultant XFH �ij scan.

Equation (12) instantly allows the discrete covariant matrix

of the `structure-factor errors' to be obtained. Indeed, the

discrete covariant matrix h�F(h)�F(g)i of `structure-factor

errors' can be written as follows:

h�F�h��F�g�i � �bAÿ1�hg: �13�
To be speci®c, in the frame of our noise model where the XFH

noise is statistically independent for all `each-to-each' scan

points measured, the discrete covariant matrix h�F(h)�F(g)i of

discrete `structure-factor errors' is determined by the inverse

matrix of the basic equation (9). For reference, the given

approach to obtain `structure-factor errors' may be compared

with the corresponding one of the `structure-factor error'

equations [see (15)±(18) in CHP], which exploit the �2 mini-

mization for the structure-factor errors.

Using this strategy, based on (9), we then determined the

structure-factor vector F by applying the linear regression

procedure (CHP) and the discrete covariant matrix

h�F(h)�F(g)i of `structure-factor errors' in accordance with

(13). This procedure is used for determining all the 243

structure factors that contribute to the numerically simulated

resultant XFH ���; '� scans under some particular realization

of the noise random function (8) with the different noise levels

� between 0 and 10 (see e.g. Figs. 2, 3).

The ®nal results for the relative errors of the restored

structure factors, �h� � j�F�h�=Ftrue�h�j, �F(h) � Frest(h) ÿ
Ftrue(h) [except (h) for h � 0] are shown in Fig. 4 as a

histogram for the noise level range � from 0 to 6. The values

of �h� averaged over the crystallographically equivalent

re¯ections of the given Cu3Au structure are listed in Table 1.

The normalized discrete-covariant matrix h�F(h)�F(g)i/
[h�F(h)2i1/2h�F(g)2i1/2] is built in Fig. 5 as a two-dimensional

diagram. Notice that in accordance with the chosen noise

model (8) each of the elements of h�F(h)�F(g)i is proportional

to the noise level squared. All the diagonal elements of

h�F(h)2i are dominant, giving an idea of the mean-square

errors of the structure factors of restoration. Noteworthy is the

fact that equation (13) for estimating h�F(h)�F(g)i monitors

the progress of restoring the plausible structure factors using

the resultant XFH ���; '� data.

The calculated data herein clearly re¯ect all the intrinsic

features of the noise model that affects the resultant XFH

���; '� scans. Evident are all the main details of the growth of

relative errors (h) with increasing noise level � (see Fig. 4).

This is even more apparent for the correspondingly averaged

errors �h� listed in Table 1. With the XFH method for

structure determination inserted into context, the errors

Figure 4
Histogram of the relative errors of the structure factors restored,
�h� � j�F�h�=Ftrue�h�j, �F(h) � Frest(h) ÿ Ftrue(h) [except (h) for
h � 0] for the noise level range � from 0 to 6.

Figure 5
Diagram of the normalized discrete covariant matrix
h�F�h��F�g�i=h�F�h�2i1=2h�F�g�2i1=2 of the `structure-factor errors' calcu-
lated with equation (13).



directly illustrate that while the noise level � is less than and/

or around unity, most structure amplitudes are restored with

accuracy better than 10% [Table 1, except the value of F(0)]

and this result may be independent of the noise model used.

Our calculations show that although noise makes the resultant

XFH ���; '� scans rambling, at the same time it does not

strongly affect the accuracy of the restored structure factors.

Presumably, this result is independent of the noise model since

the positions and black±white contrast of Kossel lines, which

have a sense, are stable against the noise of the XFH patterns

(cf. Figs. 2, 3).

3. Discussion and concluding remarks

In this paper, we pursued the purpose of proposing the XFH

method as an ab initio technique for obtaining atomic scale

information even if the noise in the XFH ���; '� data was

rather high. The examples of the structure-factor determina-

tion carried out by use of numerically simulated XFH ���; '�
data for the ¯uorescing Cu atom of the Cu3Au structure and

different levels of noise lead to the following solid conclusion.

Even if noise composes a signi®cant part of the XFH patterns,

for instance due to low counting statistics, the XFH method

provides a robust unambiguous procedure for determining

plausible structure factors with quite a good accuracy. Besides,

it is essential that, as conventional X-ray diffraction tech-

niques use rather complicated and sophisticated mathematical

models, the said XFH method uses the linear regression

algorithm code (CHP).

Major restrictions on the implementation of the XFH

method to X-ray structure determination were analysed in our

previous paper (CHP). In particular, the kinematical scat-
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Table 1
Averaged relative errors, �h� (%), of the restored structure factors Frest(h) depending on different values of the noise level �.

The values �h� are averaged over the crystallographically equivalent re¯ections of the Cu3Au structure. The double-valued �h� for the noise level � = 1 are given
to illustrate the effect of the two different realizations of the random noise function (8).

Noise level �

h = {HKL} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.0 2.0 3.0 4.0 5.0 6.0 10.0

000 2.65 2.53 2.66 3.71 0.63 1.97 1.59 3.43 9.64 14.69 15.03 0.83 17.19 105.04 110.66 114.55
010 0.02 0.25 0.37 0.09 0.28 0.11 0.05 0.06 0.26 0.47 0.81 0.12 3.24 1.88 1.17 5.78
�110 0.00 0.21 0.16 0.26 0.28 0.48 0.12 0.08 0.22 0.18 0.02 0.05 0.41 0.48 2.02 5.06
�1�11 0.01 0.20 0.23 0.11 0.13 0.32 0.04 0.20 0.10 0.39 0.63 0.52 0.41 0.62 2.89 3.86
020 0.02 0.17 0.17 0.11 0.03 0.38 0.03 0.08 0.17 0.34 0.43 0.57 0.85 0.46 2.66 3.53
�210 0.00 0.17 0.28 0.26 0.11 0.45 0.03 0.19 0.54 0.36 0.82 0.39 2.12 1.81 2.29 0.10
�2�11 0.08 0.21 0.25 0.10 0.01 0.11 0.04 0.18 0.43 0.44 0.75 0.27 0.23 1.08 1.95 0.58
�220 0.07 0.24 0.02 0.27 0.33 0.22 0.08 0.36 0.24 0.21 0.03 0.20 0.23 0.59 2.27 4.66
030 0.11 0.26 0.64 0.04 0.12 0.69 0.80 0.62 2.11 0.57 0.48 0.29 0.40 1.00 0.82 7.22
�2�21 0.03 0.09 0.01 0.22 0.38 0.14 0.47 0.18 0.29 0.13 0.42 1.64 1.69 1.69 2.44 2.83
�310 0.06 0.35 0.06 0.69 0.33 0.18 0.29 0.58 0.51 0.04 0.41 1.82 2.22 1.70 0.06 5.74
�3�11 0.02 0.20 0.10 0.16 0.24 0.26 0.01 0.21 0.18 0.16 0.56 0.27 0.98 1.21 2.49 4.22
�2�22 0.03 0.13 0.01 0.19 0.23 0.08 0.03 0.33 0.39 0.17 0.38 0.42 0.72 2.39 0.75 3.94
�320 0.05 0.35 0.13 0.02 0.31 0.31 0.87 0.00 0.45 1.39 1.84 2.69 3.05 10.54 6.01 6.37
�3�21 0.01 0.33 0.00 0.06 0.64 0.07 0.37 0.67 0.30 0.85 1.06 0.88 6.95 0.12 0.71 4.78
040 0.10 0.28 0.23 0.05 0.45 0.51 0.30 0.16 0.23 0.09 0.51 0.83 2.43 3.03 5.12 3.51
�410 0.06 0.12 0.26 0.14 0.53 0.90 0.30 0.32 0.72 1.28 3.21 0.16 0.63 1.48 1.85 7.04
�3�22 0.02 0.05 0.01 0.71 0.25 0.63 0.21 0.29 0.21 0.01 2.07 0.77 0.02 8.79 0.65 5.19
�330 0.03 0.21 0.13 0.38 0.44 0.34 0.23 0.70 0.48 0.08 0.59 0.09 3.40 3.07 0.19 3.64
�4�11 0.11 0.31 0.00 0.33 0.61 0.23 0.15 1.58 0.45 0.91 2.00 3.56 0.48 7.47 2.37 0.94
�3�31 0.04 0.23 0.24 0.09 0.08 0.50 0.08 0.11 0.30 0.11 0.10 0.07 0.36 1.02 1.19 3.05
�420 0.00 0.28 0.02 0.27 0.07 0.57 0.28 0.09 0.47 0.27 0.77 0.11 2.80 2.13 0.25 2.73
�4�21 0.11 0.20 0.17 0.91 0.57 0.67 0.11 0.60 2.19 0.09 1.67 0.90 2.44 4.46 6.54 1.67
�3�32 0.03 0.20 0.12 0.01 0.09 0.54 0.15 0.52 0.11 0.51 0.14 0.22 4.42 0.83 6.02 2.23
�4�22 0.02 0.19 0.24 0.02 0.05 0.40 0.02 0.28 0.07 0.39 0.71 1.55 1.18 0.52 0.69 1.67

Table 2
Summary of results for the r.m.s. structure-factor errors in the case of the
crystallographically equivalent re¯ections of type {100}, {110}, {111} and
{002} of the Cu3Au structure for some realization of the random noise
function (8) with the noise level � = 1; �h� � j�F�h�=Ftrue�h�j, �F(h) �
Frest(h) ÿ Ftrue(h) is the relative (non-averaged) error of the restored
structure factor Frest(h) with noise level � � 1 (cf. column 10 of Table 1).

h

H K L Ftrue(h) (h) (%) h�F�h�2i1=2=jFtrue�h�j (%)

0 0 0 165.94 9.64 21.41
0 1 0 ÿ15.58 0.14 1.05
1 0 0 0.33 1.05
0 0 1 0.58 1.26
ÿ1 1 0 ÿ14.75 0.02 0.78

1 1 0 0.11 0.78
ÿ1 0 1 0.22 1.29

0 ÿ1 1 0.29 1.28
0 1 1 0.17 1.28
1 0 1 0.93 1.28
ÿ1 ÿ1 1 131.92 0.05 0.69
ÿ1 1 1 0.03 0.69

1 ÿ1 1 0.16 0.69
1 1 1 0.14 0.69
0 2 0 125.15 0.09 0.70
2 0 0 0.29 0.70
0 0 2 0.12 0.74
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tering approach and the corresponding basic scattering func-

tions used in our treatment, polarization and coherence

properties of the incident X-radiation, sample sizes and,

especially, the so-called `average' sets of restored structure

factors feasible from the XFH data obtained with the ¯uor-

escing Cu atom of the Cu3Au structure were analysed.

In conclusion, herein we draw attention to the peculiar

properties of a priori estimates of the structure-factor errors

based on (13). Apart from the noise level, the discrete

covariant matrix h�F(h)�F(g)i is determined by a product of

the scattering functions f �k; h� and f �k; g� only related to the

regular XFH data. It does imply that the number of different

mean-square errors h�F(h)2i even for crystallographically

equivalent re¯ections is governed by an ad hoc symmetry of

the complete system consisting of the `external' XFH set-up

(without a sample, see Fig. 1) and the Cu3Au structure sample

(Curie's principle, see e.g. Nye, 1957). As an example, we

consider such a situation with the structure factors related to

the re¯ections of {100} and {110} types of Cu3Au structure

(Table 2, for the sake of simplicity we put � = 1). As is seen,

the r.m.s. structure-factor errors differ for the re¯ections 001

and 100 and they coincide for the re¯ections 100 and 010. The

re¯ections of {110} type demonstrate similar behavior. These

are a direct consequence of Curie's principle. In fact, by virtue

of the accepted XFH ���; '� geometry with ®xed angular steps

along both the azimuth ' and polar � directions, the `external'

set-up has 360mm point symmetry whereas the Cu3Au struc-

ture has m3m point symmetry. Correspondingly, Curie's

principle claims that the complete system of a sample and

`external' set-up has the point symmetry that is the intersec-

tion of both the individual point symmetries. In our case, we

have 360mm and m3m and their intersection gives the 4mm

point symmetry since 4mm = 360mm \m3m. As a result, from

the physics viewpoint, the re¯ections 010 and 100 are

equivalent, while the re¯ections 100 and 001 are not and so

similarly are the re¯ections of {110} type and {200} type,

whereas all the {111} re¯ections are equivalent (see Table 2 for

details).

In concluding, we would like to claim that the feasibility and

capability of the linear regression code, even when there is a

rather high noise level, should be a persuasive argument for

obtaining atomic scale information on crystalline materials by

the ab initio XFH technique with quite low counting statistics.
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